Evolving software system families in space and time with feature revisions

Author:

Michelon Gabriela KarolineORCID,Obermann David,Assunção Wesley K. G.,Linsbauer Lukas,Grünbacher Paul,Fischer Stefan,Lopez-Herrejon Roberto E.,Egyed Alexander

Abstract

AbstractSoftware companies commonly develop and maintain variants of systems, with different feature combinations for different customers. Thus, they must cope with variability in space. Software companies further must cope with variability in time, when updating system variants by revising existing software features. Inevitably, variants evolve orthogonally along these two dimensions, resulting in challenges for software maintenance. Our work addresses this challenge with ECSEST (Extraction and Composition for Systems Evolving in Space and Time), an approach for locating feature revisions and composing variants with different feature revisions. We evaluated ECSEST using feature revisions and variants from six highly configurable open source systems. To assess the correctness of our approach, we compared the artifacts of input variants with the artifacts from the corresponding composed variants based on the implementation of the extracted features. The extracted traces allowed composing variants with 99-100% precision, as well as with 97-99% average recall. Regarding the composition of variants with new configurations, our approach can combine different feature revisions with 99% precision and recall on average. Additionally, our approach retrieves hints when composing new configurations, which are useful to find artifacts that may have to be added or removed for completing a product. The hints help to understand possible feature interactions or dependencies. The average time to locate feature revisions ranged from 25 to 250 seconds, whereas the average time for composing a variant was 18 seconds. Therefore, our experiments demonstrate that ECSEST is feasible and effective.

Funder

Johannes Kepler University Linz

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feature-oriented Test Case Selection during Evolution of Highly-Configurable Systems;Proceedings of the 27th ACM International Systems and Software Product Line Conference - Volume A;2023-08-28

2. Analysis and Propagation of Feature Revisions in Preprocessor-based Software Product Lines;2023 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER);2023-03

3. Union Models for Model Families: Efficient Reasoning over Space and Time;Algorithms;2023-02-11

4. Designing a Test Model for a Configurable System: An Exploratory Study of Preprocessor Directives and Feature Toggles;Proceedings of the 17th International Working Conference on Variability Modelling of Software-Intensive Systems;2023-01-25

5. Spectrum-based feature localization for families of systems;Journal of Systems and Software;2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3