Model vs system level testing of autonomous driving systems: a replication and extension study

Author:

Stocco AndreaORCID,Pulfer Brian,Tonella Paolo

Abstract

AbstractOffline model-level testing of autonomous driving software is much cheaper, faster, and diversified than in-field, online system-level testing. Hence, researchers have compared empirically model-level vs system-level testing using driving simulators. They reported the general usefulness of simulators at reproducing the same conditions experienced in-field, but also some inadequacy of model-level testing at exposing failures that are observable only in online mode. In this work, we replicate the reference study on model vs system-level testing of autonomous vehicles while acknowledging several assumptions that we had reconsidered. These assumptions are related to several threats to validity affecting the original study that motivated additional analysis and the development of techniques to mitigate them. Moreover, we also extend the replicated study by evaluating the original findings when considering a physical, radio-controlled autonomous vehicle. Our results show that simulator-based testing of autonomous driving systems yields predictions that are close to the ones of real-world datasets when using neural-based translation to mitigate the reality gap induced by the simulation platform. On the other hand, model-level testing failures are in line with those experienced at the system level, both in simulated and physical environments, when considering the pre-failure site, similar-looking images, and accurate labels.

Funder

Università della Svizzera italiana

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CooTest: An Automated Testing Approach for V2X Communication Systems;Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

2. Exploration-Driven Reinforcement Learning for Avionic System Fault Detection (Experience Paper);Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis;2024-09-11

3. Boundary State Generation for Testing and Improvement of Autonomous Driving Systems;IEEE Transactions on Software Engineering;2024-08

4. Focused Test Generation for Autonomous Driving Systems;ACM Transactions on Software Engineering and Methodology;2024-06-27

5. Assessing Quality Metrics for Neural Reality Gap Input Mitigation in Autonomous Driving Testing;2024 IEEE Conference on Software Testing, Verification and Validation (ICST);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3