1. Allamanis M, Barr ET, Bird C, Sutton C (2014) Learning natural coding conventions. In: Proceedings of the 22nd ACM SIGSOFT International symposium on foundations of software engineering, pp 281–293
2. Allamanis M, Barr ET, Bird C, Sutton C (2014) Learning natural coding conventions. In: Proceedings of the 22Nd ACM SIGSOFT International symposium on foundations of software engineering, ser. FSE 2014, pp 281–293
3. Alon U, Sadaka R, Levy O, Yahav E (2020) Structural language models of code. In: Proceedings of the 37th International conference on machine learning, ser. Proceedings of machine learning research, H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul, pp 245–256
4. Alon U, Zilberstein M, Levy O, Yahav E (2019) Code2vec: Learning distributed representations of code. Proc ACM Program Lang 13(POPL):1–29
5. Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler D, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, McCandlish S, Radford A, Sutskever I, Amodei D (2020) Language models are few-shot learners. In: Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33. Curran Associates, Inc. [Online]. Available: https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf, pp 1877–1901