Prioritizing test cases for deep learning-based video classifiers

Author:

Li Yinghua,Dang XueqiORCID,Ma Lei,Klein Jacques,Bissyandé Tegawendé F.

Abstract

AbstractThe widespread adoption of video-based applications across various fields highlights their importance in modern software systems. However, in comparison to images or text, labelling video test cases for the purpose of assessing system accuracy can lead to increased expenses due to their temporal structure and larger volume. Test prioritization has emerged as a promising approach to mitigate the labeling cost, which prioritizes potentially misclassified test inputs so that such inputs can be identified earlier with limited time and manual labeling efforts. However, applying existing prioritization techniques to video test cases faces certain limitations: they do not account for the unique temporal information present in video data. Unlike static image datasets that only contain spatial information, video inputs consist of multiple frames that capture the dynamic changes of objects over time. In this paper, we propose VRank, the first test prioritization approach designed specifically for video test inputs. The fundamental idea behind VRank is that video-type tests with a higher probability of being misclassified by the evaluated DNN classifier are considered more likely to reveal faults and will be prioritized higher. To this end, we train a ranking model with the aim of predicting the probability of a given test input being misclassified by a DNN classifier. This prediction relies on four types of generated features: temporal features (TF), video embedding features (EF), prediction features (PF), and uncertainty features (UF). We rank all test inputs in the target test set based on their misclassification probabilities. Videos with a higher likelihood of being misclassified will be prioritized higher. We conducted an empirical evaluation to assess the performance of VRank, involving 120 subjects with both natural and noisy datasets. The experimental results reveal VRank outperforms all compared test prioritization methods, with an average improvement of 5.76%$$\sim $$ 46.51% on natural datasets and 4.26%$$\sim $$ 53.56% on noisy datasets.

Funder

H2020 European Research Council

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3