Deep security analysis of program code

Author:

Sonnekalb TimORCID,Heinze Thomas S.ORCID,Mäder PatrickORCID

Abstract

AbstractDue to the continuous digitalization of our society, distributed and web-based applications become omnipresent and making them more secure gains paramount relevance. Deep learning (DL) and its representation learning approach are increasingly been proposed for program code analysis potentially providing a powerful means in making software systems less vulnerable. This systematic literature review (SLR) is aiming for a thorough analysis and comparison of 32 primary studies on DL-based vulnerability analysis of program code. We found a rich variety of proposed analysis approaches, code embeddings and network topologies. We discuss these techniques and alternatives in detail. By compiling commonalities and differences in the approaches, we identify the current state of research in this area and discuss future directions. We also provide an overview of publicly available datasets in order to foster a stronger benchmarking of approaches. This SLR provides an overview and starting point for researchers interested in deep vulnerability analysis on program code.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)

Publisher

Springer Science and Business Media LLC

Subject

Software

Reference68 articles.

1. National Institute of Standards and Technology (2020) Vulnerability - Glossary | CSRC. https://csrc.nist.gov/glossary/term/vulnerability

2. National Vulnerability Database (2020) NVD - National Vulnerability Database - Search and Statistics. https://nvd.nist.gov/vuln/search

3. Kumar C, Yadav DK (2017) Software defects estimation using metrics of early phases of software development life cycle. https://doi.org/10.1007/s13198-014-0326-2. https://ideas.repec.org/a/spr/ijsaem/v8y2017i4d10.1007_s13198-014-0326-2.html, vol 8, pp 2109–2117

4. Allamanis M, Barr ET, Devanbu P, Sutton C (2018) A survey of machine learning for big code and naturalness. ACM Comput Surv 51(4):81:1–81:37. https://doi.org/10.1145/3212695

5. The MITRE Corporation (2020) CWE - CWE List Version 4.0. https://cwe.mitre.org/data/index.html

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3