variED: an editor for collaborative, real-time feature modeling

Author:

Kuiter Elias,Krieter SebastianORCID,Krüger Jacob,Saake Gunter,Leich Thomas

Abstract

AbstractFeature models are a helpful means to document, manage, maintain, and configure the variability of a software system, and thus are a core artifact in software product-line engineering. Due to the various purposes of feature models, they can be a cross-cutting concern in an organization, integrating technical and business aspects. For this reason, various stakeholders (e.g., developers and consultants) may get involved into modeling the features of a software product line. Currently, collaboration in such a scenario can only be done with face-to-face meetings or by combining single-user feature-model editors with additional communication and version-control systems. While face-to-face meetings are often costly and impractical, using version-control systems can cause merge conflicts and inconsistency within a model, due to the different intentions of the involved stakeholders. Advanced tools that solve these problems by enabling collaborative, real-time feature modeling, analogous to Google Docs or Overleaf for text editing, are missing. In this article, we build on a previous paper and describe (1) the extended formal foundations of collaborative, real-time feature modeling, (2) our conflict resolution algorithm in more detail, (3) proofs that our formalization converges and preserves causality as well as user intentions, (4) the implementation of our prototype, and (5) the results of an empirical evaluation to assess the prototype’s usability. Our contributions provide the basis for advancing existing feature-modeling tools and practices to support collaborative feature modeling. The results of our evaluation show that our prototype is considered helpful and valuable by 17 users, also indicating potential for extending our tool and opportunities for new research directions.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conflict-based Change Awareness for Collaborative Model-driven Software Engineering.;The Journal of Object Technology;2024

2. UVLS;Proceedings of the 27th ACM International Systems and Software Product Line Conference - Volume B;2023-08-28

3. A flexible operation-based infrastructure for collaborative model-driven engineering.;The Journal of Object Technology;2023

4. Conflict management techniques for model merging: a systematic mapping review;Software and Systems Modeling;2022-10-16

5. Evolvable SPL management with partial knowledge;Proceedings of the 26th ACM International Systems and Software Product Line Conference - Volume A;2022-09-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3