Maturity model for determining digitalization levels within different product lifecycle phases

Author:

Siedler CarinaORCID,Dupont Stephanie,Zavareh Mona Tafvizi,Zeihsel Frank,Ehemann Tobias,Sinnwell Chantal,Göbel Jens C.,Zink Klaus J.,Aurich Jan C.

Abstract

AbstractMaintaining pace with ongoing changes due to digitalization is challenging for manufacturing companies. For successful implementation of digitalization, manufacturing companies must consider their existing technical systems, organizational structures, and processes, as well as social aspects. With the support of a maturity model, a company-specific digitalization level can be evaluated to provide manufacturing companies with an initial insight into their particular status quo; this can serve as a starting point for future optimization and digitalization projects. Furthermore, the results of such an analysis allow objective comparison of different areas within the company and with competitors. In this paper, the “Integrierte Arbeitssystemgestaltung in digitalisierten Produktionsunternehmen” (InAsPro) maturity model is presented, which considers the Development, Production, and Assembly product lifecycle phases, as well as Aftersales, and assesses their digitalization level focusing on the four dimensions of Technology, Organization, Social Issues, and Corporate Strategy. The maturity model’s rating scale distinguishes between four maturity levels. The results given by the InAsPro maturity model for an entire company are presented, along with those for each product lifecycle phase. Extensive descriptions for each specific maturity level are also provided.

Funder

Bundesministerium für Bildung und Forschung

European Social Fund

Technische Universität Kaiserslautern

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference77 articles.

1. Siedler C, Dupont S, Tafvizi Zavareh M et al (2020) Reifegradmodell zur Bestimmung des Digitalisieurngsgrads. In: Aurich JC, Pier M, Siedler C, Sinnwell C (eds) Bedarfsgerechte Digitalisierung von Produktionsunternehmen. Synnovating, Kaiserslautern, pp 21–36

2. Aurich JC, Pier M, Siedler C, Sinnwell C (ed.) (2020) Bedarfsgerechte Digitalisierung von Produktionsunternehmen: Ein modulares Transformationskonzept als praxisorientierter Ansatz. Synnovating

3. Monostori L, Kádár B, Bauernhansl T et al (2016) Cyber-physical systems in manufacturing. CIRP Ann Manuf Technol 65:621–641. https://doi.org/10.1016/j.cirp.2016.06.005

4. Qin J, Liu Y, Grosvenor R (2016) A categorical framework of manufacturing for industry 4.0 and beyond. Procedia CIRP 52:173–178. https://doi.org/10.1016/j.procir.2016.08.005

5. Jäger J, Schöllhammer O, Lickefett M et al (2016) Advanced complexity management strategic recommendations of handling the “Industrie 4.0” complexity for SMALL AND MEDIUM ENTERPRISES. Procedia CIRP 57:116–121. https://doi.org/10.1016/j.procir.2016.11.021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3