Towards a systematical approach for wear detection in sheet metal forming using machine learning

Author:

Kubik ChristianORCID,Becker Marco,Molitor Dirk-Alexander,Groche Peter

Abstract

AbstractWear is one of the decisive factors for the economic efficiency of sheet metal forming processes. Thereby, progressive wear phenome lead on the one hand to a poor workpiece quality and on the other hand to tool failure resulting in high machine downtimes. This trend is intensified by processing high-strength materials and the reduction of lubricant up to dry forming. In this context, data-driven monitoring methods such as machine learning (ML) provide the potential of detecting wear at an early stage to overcome manual and cost-intensive process inspections. The presented study aims to provide a ML based inline quantification of wear states within sheet metal forming processes. The development of this monitoring approach is based on a procedure model the Knowledge Discovery in Time series and image data in Engineering Epplications (KDT-EA) which is validated on two forming processes, blanking and roll forming, that strongly differ in their physical process behavior and their acquired process data. The presented inline quantification allows an estimation of wear states with a deviation of less than 0.83% for the blanking process and 2.21% for the roll forming process from the actual wear state. Furthermore, it is shown that combining different feature extraction methods as well as a compensation of unbalanced data using data augmentation techniques are able to improve the performance of the investigated ML models.

Funder

Federal Ministry of Economics and Energy

American Federation of Labor and Congress of Industrial Organizations

Technische Universität Darmstadt

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3