Tool wear when using natural rocks as cutting material for the turning of aluminum alloys and plastics

Author:

Breidenstein Bernd,Denkena Berend,Bergmann Benjamin,Picker Tobias,Wolters PhilippORCID

Abstract

AbstractThe growing challenges regarding climate-neutral and resource-saving manufacturing technology is forcing research and development to work out new cutting tool alternatives since the production of conventional cutting materials requires rare raw materials and huge amounts of energy. Natural rocks could be such an alternative since they are available in large quantities worldwide, have a potentially suitable property profile, and do not require energy-intensive processes to make them usable as cutting material. However, according to the current state of knowledge, there are only a few studies on the usability and suitability of natural rocks as cutting materials for machining processes. Therefore, in this article, inserts made of natural rocks are ground and used in turning operations. Their operational behavior is then described by the occurring tool wear and workpiece surface roughness. The influence of different natural rocks, process parameters as well as cutting edge microgeometries is compared after the machining of aluminum alloys and plastic. In the end, this made it possible to define process and tool properties in which natural rocks have application potential.

Funder

Deutsche Forschungsgemeinschaft

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of coated and uncoated carbide cutting tool wear in dry turning of en aw 2007 aluminum alloy;International Journal of Applied Mechanics and Engineering;2024-09-12

2. Alte Werkzeugmaterialien im neuen Kleid;Zeitschrift für wirtschaftlichen Fabrikbetrieb;2024-08-16

3. A novel development of sustainable cutting inserts based on PVD-coated natural rocks;Materials Today Sustainability;2023-12

4. Design of tool grinding processes for indexable inserts made of rocks;The International Journal of Advanced Manufacturing Technology;2022-11-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3