Modelling the influence of tool wear on shape errors in milling using a hybrid soft-sensor

Author:

Denkena Berend,Wichmann Marcel,Rokicki Markus,Stürenburg Lukas

Abstract

AbstractThe wear of cutting tools during milling processes not only constrains the volume of material that can be removed by a tool but also results in a progressive deterioration of the quality of the workpiece. Although there are established methodologies for predicting tool wear, there is a paucity of knowledge regarding the impact of tool wear on shape error. The authors present a data-driven soft sensor to model the effect of tool wear on shape error, obviating the need for direct tool wear measurement. To evaluate this approach, a milling experiment was conducted, wherein process forces, spindle current, and resulting shape error were measured. Furthermore, a geometrical cutting simulation was conducted in order to obtain cutting conditions, including the volume of material removed. This study examines the contribution of these features to the prediction performance of the proposed soft sensor. Additionally, the transferability from models trained on different tools is investigated to ascertain the impact of tool wear variance on prediction performance. Prediction experiments demonstrate that a soft-sensor based on a combination of simulation and process monitoring data enables a model trained on data from multiple milling tools to account for wear and predict shape error well under varying wear scenarios. The approach presented here has been demonstrated to result in a reduction of the prediction error of up to 60% compared to an average baseline prediction.

Funder

Niedersächsische Ministerium für Wissenschaft und Kultur

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

Reference28 articles.

1. Taylor FW (1907) On the art of cutting metals transactions of the ASME (American society of mechanical engineers). https://books.google.de/books?id=qhZDAAAAIAAJ

2. Astakhov VP (2006) Tribology of metal cutting Vol. 52 of Tribology and Interface Engineering (Elsevier Science)

3. Denkena B (1992) Verschleissverhalten von Schneidkeramik bei instationärer Belastung Als ms. gedr edn, Vol. Nr. 249 of IFW-Produktionstechnik (VDI-Verl., Düsseldorf)

4. Toenshoff HK, Denkena B (2013) Basics of cutting and abrasive processes. Springer, Berlin Heidelberg

5. Wang J, Wang P, Gao RX (2015) Enhanced particle filter for tool wear prediction. J Manuf Syst 36:35–45. https://doi.org/10.1016/j.jmsy.2015.03.005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3