Soft sensor for in-line quality control of turning processes based on non-destructive testing techniques and advanced data fusion

Author:

Böttger DavidORCID,González Germán,Geiser Alexander,Kempf Daniel,Lanza Gisela,Schulze Volker,Wolter Bernd

Abstract

AbstractThis study describes the systematic process of training, testing, and validating a soft sensor designed for quality control of a turning process on components made of AISI 4140 steel. The soft sensor allows product quality to be predicted and unfavorable surface conditions to be identified, in particular the appearance of a phenomenon known as “White Layer”, often characterized in the case of AISI 4140 steel by an ultra-fine-grained microstructure (UFG). Basis of the soft sensor is a data fusion supported by non-destructive testing techniques (NDT), particularly micromagnetic methods (3MA). A critical part of this work is to address challenges such as lift-off compensation and in-process detection using 3MA. The application of machine-learning techniques, including Principal Component Analysis (PCA) and regression analysis, is detailed. These techniques result in robust models capable of detecting the occurrence of the White Layer phenomenon while minimizing the influence of measurement setup variations and process disturbances. In addition, the study demonstrates the integration of NDT into the machining process which drives the soft sensor and allows suitable adjustments of the process parameters. The data-driven soft sensor approach demonstrates a possible In-Line control system and discusses different control theories and their respective advantages and disadvantages. This system can effectively set targeted surface conditions in real time during the turning process.

Funder

Deutsche Forschungsgemeinschaft

Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3