Numerical and experimental investigations for distortion-reduced laser heat treatment of aluminum

Author:

Rigas NikolaosORCID,Merklein Marion

Abstract

AbstractIn the field of mobility, increased safety and emission requirements lead to steadily rising demands on materials used and their performance. Over the last decades, 5000 and 6000 series aluminum alloys have become more and more attractive as lightweight material due to their beneficial weight to strength ratio. The 7000 series offers extended lightweight potential due to its high strength. Until now, this class of alloys has not been widely used in mass production due to its limited corrosion resistance and poor forming behavior. By using so-called Tailor Heat Treated Blanks, it is possible to set increased forming limits of previously locally heat treated components. The reason for the enhanced formability is the local softening, with the resulting improved material flow and the reduced critical forming stresses of the sheet metal before the forming operation. Despite these advantages, the use of previously heat treated materials has been very limited so far. For example, the distortion that occurs during local heat treatment reduces geometrical accuracy and thus automated handling. Therefore, the focus of this thesis is the investigation of tailored heat treatment strategies, permitting a distortion-reduced local short-term heat treatment. For this purpose, the distortion behavior is represented and quantified both numerically and experimentally. The generated knowledge is then transferred to a large volume component and characterized.

Funder

Deutsche Forschungsgemeinschaft

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference16 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3