Investigations on sheet metal forming of hybrid parts in different stress states

Author:

Hafenecker Jan,Merklein Marion

Abstract

AbstractConventional processes are being pushed to their limits by growing demands in terms of sustainability and diversity of variants. Hybrid components, which are produced by a combination of two or more manufacturing processes, are a suitable way of meeting these challenges. The combination of sheet metal forming processes with additive manufacturing offers the potential to link personalized components with standardized parts. Knowing that the additively manufactured components influence the forming process, it is essential to understand the interactions in detail. Therefore, this work will compare the influence of several additively manufactured elements (AME) for deep drawing with two different punch geometries. The approach used combines experimental and numerical investigations to improve process insight in relation to sheet metal forming of hybrid components. The results show that the AMEs amplify existing stresses and strains in dependence of the present load. Sections subjected to low loads, as it is found in the bottom of the cup manufactured with a cylindrical punch, are hardly affected, whereas stronger loaded areas, e.g. the center of the parts manufactured with a hemispherical punch, are affected all the more.

Funder

Deutsche Forschungsgemeinschaft

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid process chains combining metal additive manufacturing and forming – A review;CIRP Journal of Manufacturing Science and Technology;2023-11

2. Investigation of the effect of process parameters in sheet hydroforming process;International Journal on Interactive Design and Manufacturing (IJIDeM);2023-06-14

3. Alternating Additive Manufacturing and Forming—An Innovative Manufacturing Approach;Journal of Manufacturing and Materials Processing;2023-05-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3