A time series classification approach to non-destructive hardness testing using magnetic Barkhausen noise emission

Author:

Unterberg MartinORCID,Stanke Joachim,Trauth Daniel,Bergs Thomas

Abstract

AbstractThe process setup of manufacturing processes is generally knowledge-based and carried out once for a material batch. Industry experts observe fluctuations in product quality and tool life, albeit the process setup remains unchanged. These fluctuations are mainly attributed to fluctuations in material parameters. An in-situ detection of changes in material parameters would enable manufacturers to adapt process parameters like forces or lubrication before turbulences like unexpectedly high tool wear or degradation in product quality occurs. This contribution shows the applicability of a deep learning time series classification architecture that does not rely on handcrafted feature engineering for the classification of hardness fluctuations in a sheet-metal coil using magnetic Barkhausen noise emission. This methodology is not limited to the detection of hardness fluctuations in sheet-metal coils and can potentially be applied for the in-situ material property classification in different manufacturing processes and for different material parameters.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Wirtschaft und Technologie

RWTH Aachen

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3