Automated geometry characterization of laser-structured battery electrodes

Author:

Hille LucasORCID,Hoffmann Paul,Kriegler Johannes,Mayr Andreas,Zaeh Michael F.

Abstract

AbstractMicro structuring of battery electrodes with pulsed laser radiation substantially increases the performance of lithium-ion batteries. For process design and monitoring, determining the resulting hole diameters and depths is essential. This study presents an automated, model-based approach for the geometry characterization of laser-drilled structures in battery electrodes. An iteratively re-weighted least squares algorithm is used for fitting of a reference plane to confocal laser scanning microscopy images of laser-structured electrodes. Using a threshold-based segregation of the generated weights, the holes are segmented from the pristine electrode surfaces. The results from the automated geometry determination were found to coincide well with manual measurements. By reducing the image resolution, the runtime of the code could be decreased, which yet lowered the accuracy of the hole depth prediction. In a sensitivity analysis, the algorithm performed stably under changes in the recording conditions, such as altered image brightness, frame rate, or vertical resolution. In conclusion, the presented method reduces the effort and increases the reproducibility for analyzing large experimental data sets in laser electrode structuring. Furthermore, the approach can be successfully transferred to other applications, which is demonstrated by indentations in battery current collector foils stemming from electrode calendering.

Funder

Bundesministerium für Bildung und Forschung

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3