MICAR: multi-inhabitant context-aware activity recognition in home environments

Author:

Arrotta Luca,Bettini Claudio,Civitarese GabrieleORCID

Abstract

AbstractThe sensor-based recognition of Activities of Daily Living (ADLs) in smart-home environments enables several important applications, including the continuous monitoring of fragile subjects in their homes for healthcare systems. The majority of the approaches in the literature assume that only one resident is living in the home. Multi-inhabitant ADLs recognition is significantly more challenging, and only a limited effort has been devoted to address this setting by the research community. One of the major open problems is called data association, which is correctly associating each environmental sensor event (e.g., the opening of a fridge door) with the inhabitant that actually triggered it. Moreover, existing multi-inhabitant approaches rely on supervised learning, assuming a high availability of labeled data. However, collecting a comprehensive training set of ADLs (especially in multiple-residents settings) is prohibitive. In this work, we propose MICAR: a novel multi-inhabitant ADLs recognition approach that combines semi-supervised learning and knowledge-based reasoning. Data association is performed by semantic reasoning, combining high-level context information (e.g., residents’ postures and semantic locations) with triggered sensor events. The personalized stream of sensor events is processed by an incremental classifier, that is initialized with a limited amount of labeled ADLs. A novel cache-based active learning strategy is adopted to continuously improve the classifier. Our results on a dataset where up to 4 subjects perform ADLs at the same time show that MICAR reliably recognizes individual and joint activities while triggering a significantly low number of active learning queries.

Funder

telecom italia

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Hardware and Architecture,Information Systems,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3