Subscribing to big data at scale

Author:

Wang XikuiORCID,Carey Michael J.,Tsotras Vassilis J.

Abstract

AbstractToday, data is being actively generated by a variety of devices, services, and applications. Such data is important not only for the information that it contains, but also for its relationships to other data and to interested users. Most existing Big Data systems focus on passively answering queries from users, rather than actively collecting data, processing it, and serving it to users. To satisfy both passive and active requests at scale, application developers need either to heavily customize an existing passive Big Data system or to glue one together with systems like Streaming Engines and Pub-sub services. Either choice requires significant effort and incurs additional overhead. In this paper, we present the BAD (Big Active Data) system as an end-to-end, out-of-the-box solution for this challenge. It is designed to preserve the merits of passive Big Data systems and introduces new features for actively serving Big Data to users at scale. We show the design and implementation of the BAD system, demonstrate how BAD facilitates providing both passive and active data services, investigate the BAD system’s performance at scale, and illustrate the complexities that would result from instead providing BAD-like services with a “glued” system.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Hardware and Architecture,Information Systems,Software

Reference48 articles.

1. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The Hadoop distributed file system. In: Khatib, M.G., He, X., Factor, M. (eds.) IEEE 26th Symposium on Mass Storage Systems and Technologies, MSST 2012, pp. 1–10. Lake Tahoe, Nevada, USA, 3–7 May (2010). https://doi.org/10.1109/MSST.2010.5496972

2. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-foreign language for data processing. In: Wang, J.T. (ed.) Proceedings of the ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, pp. 1099–1110. Vancouver, BC, Canada, 10–12 June (2008). https://doi.org/10.1145/1376616.1376726

3. Thusoo, A., Sarma, J.S., Jain, N., et al.: Hive: a warehousing solution over a map-reduce framework. PVLDB 2(2), 1626–1629 (2009). https://doi.org/10.14778/1687553.1687609

4. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin, M.J., Shenker, S., Stoica, I.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Gribble, S.D., Katabi, D. (eds.) Proceedings of the 9th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2012, , pp. 15–28. San Jose, CA, USA, 25–27 Apr (2012)

5. Terry, D.B., Goldberg, D., Nichols, D.A., Oki, B.M.: Continuous queries over append-only databases. In: Stonebraker, M. (ed.) Proceedings of the 1992 ACM SIGMOD International Conference on Management of Data, pp. 321–330. San Diego, California, USA, 2–5 June (1992). https://doi.org/10.1145/130283.130333

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3