Evaluation of steric entanglement in coiled-coil and domain-swapped protein interfaces using 3D printed models

Author:

Blaber MichaelORCID

Abstract

AbstractOligomeric protein interfaces involve non-covalent attractive forces plus potential steric entanglement. 70 years ago, Crick proposed a “Knobs in Holes” model for coiled-coil protein interfaces. Subsequently, modifications to this model have been proposed, describing either a “leucine zipper”, “jigsaw puzzle”, or a “peptide Velcro” interface. These principally describe forms of steric entanglement that may enhance oligomer stability. However, such entanglement has not been rigorously evaluated since it is not possible to experimentally eliminate intrinsic non-covalent attractive forces. 3D printing provides a novel means to evaluate steric entanglement of protein interfaces in the absence of attractive forces. Surprisingly, quantitation of the energy required to dissociate various coiled-coil protein interfaces of 3D printed protein models suggests minimal steric entanglement. Conversely, evaluation of domain-swapped interfaces of symmetric protein oligomers, differing by circular permutation, identifies extensive potential steric entanglement. Combined with available experimental data, the results suggest that steric entanglement of a protein interface can contribute to kinetic trapping of both folding and unfolding pathways. Steric entanglement of protein interfaces is therefore postulated to be an undesirable property for naturally evolved and designed protein oligomers.

Funder

Trefoil Therapeutics

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3