What is a Simulation Model?

Author:

Durán Juan M.

Abstract

AbstractMany philosophical accounts of scientific models fail to distinguish between a simulation model and other forms of models. This failure is unfortunate because there are important differences pertaining to their methodology and epistemology that favor their philosophical understanding. The core claim presented here is that simulation models are rich and complex units of analysis in their own right, that they depart from known forms of scientific models in significant ways, and that a proper understanding of the type of model simulations are fundamental for their philosophical assessment. I argue that simulation models can be distinguished from other forms of models by the many algorithmic structures, representation relations, and new semantic connections involved in their architecture. In this article, I reconstruct a general architecture for a simulation model, one that faithfully captures the complexities involved in most scientific research with computer simulations. Furthermore, I submit that a new methodology capable of conforming such architecture into a fully functional, computationally tractable computer simulation must be in place. I discuss this methodology—what I call recasting—and argue for its philosophical novelty. If these efforts are heading towards the right interpretation of simulation models, then one can show that computer simulations shed new light on the philosophy of science. To illustrate the potential of my interpretation of simulation models, I briefly discuss simulation-based explanations as a novel approach to questions about scientific explanation.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Philosophy

Reference74 articles.

1. Ajelli, M., Gonçalves, B., Balcan, D., Colizza, V., Hu, H., Ramasco, J. J., et al. (2010). Comparing Large-scale computational approaches to epidemic modeling: agent-based versus structured metapopulation models., 10(190), 1–13.

2. Altman, A. A. (2018). Causal models. In: The Stanford Encyclopedia of Philosophy (Summer 2019 Edition). https://plato.stanford.edu/archives/sum2019/entries/causal-models/.

3. Bailer-Jones, D. (2009). Scientific Models in Philosophy of Science. Pittsburgh: University of Pittsburgh Press.

4. Balcan, D., Colizza, V., Gonçalves, B., Hu, H., Ramasco, J. J., & Vespignani, A. (2009). Multiscale mobility networks and the spatial spreading of infectious diseases. Proceedings of the National Academy of Sciences, 106(51), 21484–21489.

5. Barberousse, A., & Marion, V. (2013). Computer Simulations and empirical data. Newcastle upon Tyne: Cambridge Scholars Publishing.

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3