Hydrazinecarbothioamide Derivative as an Effective Inhibitor for Corrosion Control: Electrochemical, Surface and Theoretical Studies

Author:

Bairy Manjunath,Pais Mikitha,Kumari P. Preethi,Rao Suma A.ORCID

Abstract

Abstract Aluminium has played a significant role in the advancement of metal matrix composites (MMC) and has drawn the attention of researchers since Al composites find extensive application in aerospace, military and automobile industries. This paper describes the corrosion property of 6061 Al-15 vol%. SiC(p) composites in hydrochloric acid medium. This composite with high strength-to-weight ratio and other alluring properties undergoes corrosion in acid media and a study has been made in 0.5 M hydrochloric acid using (2Z)-2-(2-hydroxy-3methoxybenzylidene) hydrazinecarbothioamide (HCT) as an inhibitor. Results of the electrochemical studies and surface morphology are presented. With the increase in HCT concentration, inhibition efficiency increased. But efficiency decreased with an increase in temperature. The maximum efficiency was found to be 56.8% for the addition of 10 × 10–5 M HCT concentration at 303 K. The inhibitor was found to behave as a mixed inhibitor affecting both anodic metal dissolution reaction and cathodic hydrogen evolution to the same extent. The HCT molecules were found to physisorb over the Al-composite surface and adsorption followed Langmuir’s adsorption isotherm. Adsorption of HCT was confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Computational studies using density functional theory (DFT) supported experimental findings. Density functional theory calculations gave a clear insight into the mechanistic aspects of corrosion inhibition. Graphic Abstract

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Materials Science (miscellaneous),Metals and Alloys

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3