Author:
Kishikawa Tatsuya,Fujieda Hiroaki,Sakaguchi Hirokazu
Abstract
AbstractIn acute kidney injury caused by sepsis (septic AKI), excessive production of inflammatory mediators is believed to be involved in deterioration of the disease. Renal replacement therapy using a polymethyl methacrylate (PMMA) membrane hemofilter improves the pathological condition of septic AKI by adsorbing and removing inflammatory cytokines. However, the adsorption properties of the PMMA membrane are unclear. In this study, we comprehensively analyzed the adsorption of 48 different cytokines in human plasma to PMMA and polysulfone (PS) membranes. Seventy-nine percent (38/48) of the cytokines were adsorbed more efficiently to the PMMA membrane than the PS membrane, which indicates that the PMMA membrane has high cytokine adsorption ability. The adsorption rate tended to be higher for the cytokines with lower molecular weight, and there was a significant correlation between the molecular weight of the cytokines and the adsorption rates. Electron microscopy showed that the PMMA hollow fiber membrane had a uniform internal structure from the inner to the outer layers of the membrane and had nano-pores inside the membrane that may have contributed to the adsorption of proteins with a specific molecular weight range. The clinical efficacy of a PMMA membrane hemofilter with cytokine adsorption properties against septic AKI needs further investigation including the evaluation of filtration performance of the hemofilters.
Publisher
Springer Science and Business Media LLC
Subject
Cardiology and Cardiovascular Medicine,Biomedical Engineering,Biomaterials,Medicine (miscellaneous)
Reference15 articles.
1. Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int. 2019;96:1083–99.
2. Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lo S, McArthur C, McGuinness S, Myburgh J, Norton R, Scheinkestel C, Su S, RENAL Replacement Therapy Study Investigators. Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med. 2009;36:1627–38.
3. Palevsky PM, Zhang JH, O’Connor TZ, Chertow GM, Crowley ST, Choudhury D, Finkel K, Kellum JA, Paganini E, Schein RM, Smith MW, Swanson KM, Thompson BT, Vijayan A, Watnick S, Star RA, Peduzzi P, VA/NIH Acute Renal Failure Trial Network. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008;359:7–20.
4. Lumlertgul N, Hall A, Camporota L, Crichton S, Ostermann M. Clearance of inflammatory cytokines in patients with septic acute kidney injury during renal replacement therapy using the EMiC2 filter (Clic-AKI study). Crit Care. 2021;25:39.
5. Moriyama K, Nishida O. Targeting cytokines, pathogen-associated molecular patterns, and damage-associated molecular patterns in sepsis via blood purification. Int J Mol Sci. 2021;22:8882.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献