Prediction of aortic valve regurgitation after continuous-flow left ventricular assist device implantation using artificial intelligence trained on acoustic spectra

Author:

Misumi Yusuke,Miyagawa Shigeru,Yoshioka Daisuke,Kainuma Satoshi,Kawamura Takuji,Kawamura Ai,Maruyama Yuichi,Ueno Takayoshi,Toda Koichi,Asanoi Hidetsugu,Sawa Yoshiki

Abstract

AbstractSignificant aortic regurgitation (AR) is a common complication after continuous-flow left ventricular assist device (LVAD) implantation. Using machine-learning algorithms, this study was designed to examine valuable predictors obtained from LVAD sound and to provide models for identifying AR. During a 2-year follow-up period of 13 patients with Jarvik2000 LVAD, sound signals were serially obtained from the chest wall above the LVAD using an electronic stethoscope for 1 min at 40,000 Hz, and echocardiography was simultaneously performed to confirm the presence of AR. Among the 245 echocardiographic and acoustic data collected, we found 26 episodes of significant AR, which we categorized as “present”; the other 219 episodes were characterized as “none”. Wavelet (time–frequency) analysis was applied to the LVAD sound and 19 feature vectors of instantaneous spectral components were extracted. Important variables for predicting AR were searched using an iterative forward selection method. Seventy-five percent of 245 episodes were randomly assigned as training data and the remaining as test data. Supervised machine learning for predicting concomitant AR involved an ensemble classifier and tenfold stratified cross-validation. Of the 19 features, the most useful variables for predicting concomitant AR were the amplitude of the first harmonic, LVAD rotational speed during intermittent low speed (ILS), and the variation in the amplitude during normal rotation and ILS. The predictive accuracy and area under the curve were 91% and 0.73, respectively. Machine learning, trained on the time–frequency acoustic spectra, provides a novel modality for detecting concomitant AR during follow-up after LVAD.

Publisher

Springer Science and Business Media LLC

Subject

Cardiology and Cardiovascular Medicine,Biomedical Engineering,Biomaterials,Medicine (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3