Refinement of Hélein’s conjecture on boundedness of conformal factors when $$n = 3$$

Author:

Plotnikov Pavel I.,Toland John F.

Abstract

AbstractFor smooth mappings of the unit disc into the oriented Grassmannian manifold $${\mathbb {G}}_{n,2}$$ G n , 2 , Hélein (Harmonic Maps Conservation Laws and Moving Frames, Cambridge University Press, Cambridge, 2002) conjectured the global existence of Coulomb frames with bounded conformal factor provided the integral of $$|{{\varvec{A}}} |^2$$ | A | 2 , the squared-length of the second fundamental form, is less than $$\gamma _n=8\pi $$ γ n = 8 π . It has since been shown that the optimal bounds that guarantee this result are: $$\gamma _3 = 8\pi $$ γ 3 = 8 π and $$\gamma _n = 4\pi $$ γ n = 4 π for $$n \ge 4$$ n 4 . For isothermal immersions in $${\mathbb {R}}^3$$ R 3 , this hypothesis is equivalent to saying the integral of the sum of the squares of the principal curvatures is less than $$\gamma _3$$ γ 3 . The goal here is to prove that when $$n=3$$ n = 3 the same conclusion holds under weaker hypotheses. In particular, it holds for isothermal immersions when $$|{{\varvec{A}}} |^2$$ | A | 2 is integrable and the integral of $$|K |$$ | K | , where K is the Gauss curvature, is less than $$4\pi $$ 4 π . Since $$2|K |\le |{{\varvec{A}}} |^2$$ 2 | K | | A | 2 this implies the known result for isothermal immersions, but $$|K |$$ | K | may be small when $$|{{\varvec{A}}} |^2$$ | A | 2 is large. The method, which is purely analytic, is then developed to examine the case $$n=3$$ n = 3 when $$|\varvec{A} |$$ | A | is only square-integrable. The possibility of extending that result in the language of Grassmannian manifolds to the case $$n>3$$ n > 3 is outlined in an Appendix.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Reference24 articles.

1. Bethuel, F., Zheng, X.M.: Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80(1), 60–75 (1988)

2. Chern, S.S.: Curves and surfaces in Euclidean space. In: Chern, S. S. (ed.) Studies in Global Geometry and Analysis. Studies in Mathematics, vol. 4, pp. 16–56. Mathematical Association of America (1967)

3. Dunford, N., Schwartz, J.T.: Linear Operators II: Spectral Theory. Wiley Interscience, New York (1968)

4. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)

5. Hélein, F.: Harmonic Maps. Conservation Laws and Moving Frames. Cambridge University Press, Cambridge (2002)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3