Abstract
AbstractIn this paper, we study limiting embeddings of Besov-type and Triebel-Lizorkin-type spaces, $$\text {id}_\tau : {B}_{p_1,q_1}^{s_1,\tau _1}(\Omega ) \hookrightarrow {B}_{p_2,q_2}^{s_2,\tau _2}(\Omega )$$
id
τ
:
B
p
1
,
q
1
s
1
,
τ
1
(
Ω
)
↪
B
p
2
,
q
2
s
2
,
τ
2
(
Ω
)
and $$\text {id}_\tau : {F}_{p_1,q_1}^{s_1,\tau _1}(\Omega ) \hookrightarrow {F}_{p_2,q_2}^{s_2,\tau _2}(\Omega )$$
id
τ
:
F
p
1
,
q
1
s
1
,
τ
1
(
Ω
)
↪
F
p
2
,
q
2
s
2
,
τ
2
(
Ω
)
, where $$\Omega \subset {{{\mathbb {R}}}^d}$$
Ω
⊂
R
d
is a bounded domain, obtaining necessary and sufficient conditions for the continuity of $$\text {id}_\tau $$
id
τ
. This can also be seen as the continuation of our previous studies of compactness of the embeddings in the non-limiting case. Moreover, we also construct Rychkov’s linear, bounded universal extension operator for these spaces.
Funder
Deutsche Forschungsgemeinschaft
Narodowe Centrum Nauki
Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. Bui, H.-Q., Paluszyński, M., Taibleson, M.H.: A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces. Studia Math. 119, 219–246 (1996)
2. Edmunds, D.E., Triebel, H.: Function Spaces, Entropy Numbers, Differential Operators. Cambridge Univ. Press, Cambridge (1996)
3. El Baraka, A.: An embedding theorem for Campanato spaces. Electron. J. Differential Equat. 66, 1–17 (2002)
4. El Baraka, A.: Function spaces of BMO and Campanato type, pp.109-115, in: Proc. of the 2002 Fez Conference on Partial Differential Equations, Electron. J. Differ. Equ. Conf. 9, Southwest Texas State Univ., San Marcos, TX (2002)
5. El Baraka, A.: Littlewood-Paley characterization for Campanato spaces. J. Funct. Spaces Appl. 4, 193–220 (2006)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献