Abstract
AbstractIn the context of Euclidean spaces equipped with an arbitrary Radon measure, we prove the equivalence among several different notions of Sobolev space present in the literature and we characterise the minimal weak upper gradient of all Lipschitz functions.
Funder
Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta
University of Jyväskylä
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Alberti, G., Marchese, A.: On the differentiability of Lipschitz functions with respect to measures in the Euclidean space. Geom. Funct. Anal. 26, 1–66 (2016)
2. Aliprantis, C., Border, K.: Infinite Dimensional Analysis: A Hitchhiker’s Guide. Studies in Economic Theory. Springer, Berlin (1999)
3. Allard, W.K.: On the first variation of a varifold. Ann. Math. 95, 417–491 (1972)
4. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics, 2nd edn. ETH, Zürich (2008)
5. Ambrosio, L., Gigli, N., Savaré, G.: Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Rev. Mat. Iberoam. 29, 969–996 (2013)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献