1. Bony, J.-M.: Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble), 19, (1969), fasc. 1, 277–304 xii
2. Bramanti, M., Brandolini, L., Lanconelli, E., Uguzzoni, F.: Non-divergence equations structured on Hörmander vector fields: heat kernels and Harnack inequalities. Mem. Am. Math. Soc. 204, 961 (2010). vi+123
3. Capogna, L., Danielli, D., Garofalo, N.: The geometric Sobolev embedding for vector fields and the isoperimetric inequality. Commun. Anal. Geom. 2(2), 203–215 (1994)
4. Capogna, L., Garofalo, N.: Boundary behavior of nonnegative solutions of subelliptic equations in NTA domains for Carnot–Carathéodory metrics. J. Fourier Anal. Appl. 4(4–5), 403–432 (1998)
5. Capogna, L., Garofalo, N.: Ahlfors type estimates for perimeter measures in Carnot–Carathéodory spaces. J. Geom. Anal. 16(3), 455–497 (2006)