Author:
de Giovanni Francesco,Trombetti Marco
Abstract
AbstractLet $${\mathfrak {X}}$$
X
be a group class. A group G is an opponent of $${\mathfrak {X}}$$
X
if it is not an $${\mathfrak {X}}$$
X
-group, but all its proper subgroups belong to $${\mathfrak {X}}$$
X
. Of course, every opponent of $${\mathfrak {X}}$$
X
is a cohopfian group and the aim of this paper is to describe the smallest group class containing $${\mathfrak {X}}$$
X
and admitting no such a kind of cohopfian groups.
Funder
Università degli Studi di Napoli Federico II
Publisher
Springer Science and Business Media LLC
Reference35 articles.
1. Baer, R.: Überauflösbare Gruppen. Abh. Math. Sem. Univ. Hamburg 23, 11–28 (1957)
2. Bruno, B.: On groups with $$<<{abelian by finite}>>$$ proper subgroups. Boll. Un. Mat. Ital. 3, 797–807 (1984)
3. Bruno, B., Phillips, R.E.: Groups with restricted non-normal subgroups. Math. Z. 176, 199–221 (1981)
4. Bruno, B., Phillips, R.E.: On minimal conditions related to Miller-Moreno type groups. Rend. Sem. Mat. Univ. Padova 69, 153–168 (1983)
5. De Falco, M., de Giovanni, F., Musella, C.: Groups whose finite homomorphic images are metahamiltonian. Comm. Algebra 37, 2468–2476 (2009)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Large norms in group theory;Journal of Algebra;2024-05
2. Groups with iterated restrictions on conjugacy classes;Journal of Algebra and Its Applications;2022-09-15