Author:
Damek Ewa,Ghardallou Zeineb
Abstract
AbstractWe give necessary and sufficient conditions for the existence of entire solutions bounded or large of the equation $${\mathcal {L}}u - p\psi (u) =0$$
L
u
-
p
ψ
(
u
)
=
0
, where $${\mathcal {L}}$$
L
is either the Laplace operator on $${\mathbb {R}} ^d$$
R
d
, $$d\ge 3$$
d
≥
3
or the Laplace–Beltrami operator on the harmonic NA group and p is a function whose oscillation tends to zero at infinity at a specified rate. The results apply to noncompact rank one symmetric spaces.
Funder
National Science centre Poland
Publisher
Springer Science and Business Media LLC
Reference13 articles.
1. Anker, J.P., Damek, E., Yacoub, C.: Spherical analysis of harmonic $$AN$$ groups, Estratto dagli Annali della Scuola Normale Superiore di Pisa, Scienze Fisiche e Matematiche-Serie IV, vol. XXIII. Fasc. 4 (1996)
2. Astarita, G., Marrucci, G.: Principles of non-Newtonian fluid mechanics. McGraw-Hill, New York (1974)
3. Cheng, K.-S., Ni, W.-M.: On the structure of the conformal scalar curvature equation on $${\mathbb{R}}^n$$. Indiana Univ. Math. J. 41(1), 261–278 (1992)
4. Damek, E., Ricci, F.: Harmonic analysis on solvable extensions of H-type groups. J. Geom. Anal. 2, 213–248 (1992)
5. Damek, E., Ghardallou, Z.: Large versus bounded solutions to sublinear elliptic problems. Bull. Pol. Acad. Sci. Math. 67, 69–82 (2019)