Abstract
AbstractWe establish the local-to-global property of the synthetic curvature-dimension condition for essentially non-branching locally finite metric-measure spaces, extending the work [Cavalletti and Milman in Invent Math 226(1):1–137, 2021].
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Ambrosio, L., Gigli, N.: A User’s Guide to Optimal Transport, pp. 1–155. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)
2. Ambrosio, L., Gigli, N., Savare, G.: Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. Invent. Math. 195(2), 289–391 (2013)
3. Bianchini, S., Caravenna, L.: On the extremality, uniqueness and optimality of transference plans. Bull. Inst. Math. Acad. Sin. (N.S.) 4(4), 353–454 (2009)
4. Bianchini, S., Cavalletti, F.: The Monge problem for distance cost in geodesic spaces. Commun. Math. Phys. 318, 615–673 (2011)
5. Cavalletti, F.: Monge problem in metric measure spaces with Riemannian curvature-dimension condition. Nonlinear Anal. 99, 136–151 (2014)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献