Random iteration on hyperbolic Riemann surfaces

Author:

Abate MarcoORCID,Christodoulou Argyrios

Abstract

AbstractLet $$\{f_\nu \}\subset \mathop {\mathrm {Hol}}\nolimits (X,X)$$ { f ν } Hol ( X , X ) be a sequence of holomorphic self-maps of a hyperbolic Riemann surface X. In this paper we shall study the asymptotic behaviour of the sequences obtained by iteratively left-composing or right-composing the maps $$\{f_\nu \}$$ { f ν } ; the sequences of self-maps of X so obtained are called left (respectively, right) iterated function systems. We shall obtain the analogue for left iterated function systems of the theorems proved by Beardon, Carne, Minda and Ng for right iterated function systems with value in a Bloch domain; and we shall extend to the setting of general hyperbolic Riemann surfaces results obtained by Short and the second author in the unit disk $$\mathbb {D}$$ D for iterated function systems generated by maps close enough to a given self-map.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Università di Pisa

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Reference17 articles.

1. Abate, Marco: Iteration theory of holomorphic maps on taut manifolds. Mediterranean Press, Rende (1989)

2. Beardon, A.F., Carne, T.K., Minda, D., Ng, T.W.: Random iteration of analytic maps. Ergodic Theory Dynam. Systems 24, 659–675 (2004)

3. Beardon, A.F., Minda, D.: The hyperbolic metric and geometric function theory, pp. 9–56. Narosa, New Delhi, Quasiconformal mappings and their applications (2007)

4. Christodoulou, A., Short, I.: Stability of the Denjoy-Wolff theorem, Preprint, arXiv:1907.09366v1, 2019

5. Denjoy, A.: Sur l’itération des fonctions analytiques, C.R. Acad. Sci. Paris, 182, 1926, 255–257

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3