Author:
Catino Giovanni,Monticelli Dario D.,Punzo Fabio
Abstract
AbstractWe prove an existence result for the Poisson equation on non-compact Riemannian manifolds satisfying weighted Poincaré inequalities outside compact sets. Our result applies to a large class of manifolds including, for instance, all non-parabolic manifolds with minimal positive Green’s function vanishing at infinity. On the source function, we assume a sharp pointwise decay depending on the weight appearing in the Poincaré inequality and on the behavior of the Ricci curvature at infinity. We do not require any curvature or spectral assumptions on the manifold. In comparison with previous works, we can deal with a more general setting on the curvature bounds and without any spectral assumption.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献