Author:
Caddeo Renzo,Onnis Irene I.,Piu Paola
Abstract
AbstractIn this paper, we generalize a classical result of Bour concerning helicoidal surfaces in the three-dimensional Euclidean space $${\mathbb {R}}^3$$
R
3
to the case of helicoidal surfaces in the Bianchi–Cartan–Vranceanu (BCV) spaces, i.e., in the Riemannian 3-manifolds whose metrics have groups of isometries of dimension 4 or 6, except the hyperbolic one. In particular, we prove that in a BCV-space there exists a two-parameter family of helicoidal surfaces isometric to a given helicoidal surface; then, by making use of this two-parameter representation, we characterize helicoidal surfaces which have constant mean curvature, including the minimal ones.
Funder
Università degli Studi di Cagliari
Publisher
Springer Science and Business Media LLC
Reference40 articles.
1. Alexandrino, M.M., Bettiol, R.G.: Lie groups and geometric aspects of isometric actions. Springer, Cham (2015)
2. Back, A., do Carmo, M.P., Hsiang, W.Y.: On some fundamental equations of equivariant Riemannian geometry. Tamkang J. Math. 40(4), 343–376 (2009)
3. Beltrami, E.: Risoluzione di un problema relativo alla teoria Delle Superfici gobbe. Ann. Mat. Pura Appl. 7, 139–150 (1865)
4. Bianchi, L.: Sugli spazi a tre dimensioni che ammettono un gruppo continuo di movimenti, Mem. Soc. It. delle Scienze (dei XL) (b), 11: 267–352 (1897)
5. Bianchi, L.: Gruppi continui e finiti. Ed. Zanichelli, Bologna (1928)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献