Abstract
AbstractA theory of partial separability for classical Hamiltonian systems is proposed in the context of Haantjes geometry. As a general result, we show that the knowledge of a non-semisimple symplectic-Haantjes manifold for a given Hamiltonian system is sufficient to construct sets of coordinates (called Darboux-Haantjes coordinates) that allow both the partial separability of the associated Hamilton-Jacobi equations and the block-diagonalization of the operators of the corresponding Haantjes algebra. We also introduce a novel class of Hamiltonian systems, characterized by the existence of a generalized Stäckel matrix, which by construction are partially separable. They widely generalize the known families of partially separable Hamiltonian systems. The new systems can be described in terms of semisimple but non-maximal-rank symplectic-Haantjes manifolds.
Funder
Ministerio de Ciencia e Innovación
Universidad Complutense de Madrid
Publisher
Springer Science and Business Media LLC
Reference37 articles.
1. Arnold, V.I., Kozlov, V.V., Neishtadt, A.I.: Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin (1997)
2. Benenti, S.: Separability structures on Riemannian manifolds. Lect. Notes Math. 836, 512–538 (1980)
3. Benenti, S.: Stäckel systems and Killing tensors. Note di Matematica IX(Suppl.), 39–58 (1989)
4. Bogoyavlenskij, O.I.: General algebraic identities for the Nijenhuis and Haantjes torsions. Izvestya Math. 68, 1129–1141 (2004)
5. Boyer, C.P., Kalnins, E.G., Miller, W., Jr.: Separable coordinates for four-dimensional Riemannian spaces. Comm. Math. Phys. 59, 285–302 (1978)