Partial separability and symplectic-Haantjes manifolds

Author:

Reyes Daniel,Tempesta PiergiulioORCID,Tondo Giorgio

Abstract

AbstractA theory of partial separability for classical Hamiltonian systems is proposed in the context of Haantjes geometry. As a general result, we show that the knowledge of a non-semisimple symplectic-Haantjes manifold for a given Hamiltonian system is sufficient to construct sets of coordinates (called Darboux-Haantjes coordinates) that allow both the partial separability of the associated Hamilton-Jacobi equations and the block-diagonalization of the operators of the corresponding Haantjes algebra. We also introduce a novel class of Hamiltonian systems, characterized by the existence of a generalized Stäckel matrix, which by construction are partially separable. They widely generalize the known families of partially separable Hamiltonian systems. The new systems can be described in terms of semisimple but non-maximal-rank symplectic-Haantjes manifolds.

Funder

Ministerio de Ciencia e Innovación

Universidad Complutense de Madrid

Publisher

Springer Science and Business Media LLC

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3