Abstract
AbstractWe capture in the context of lex colimits, introduced by Garner and Lack, the universal property of the free regular and Barr-exact completions of a weakly lex category. This is done by introducing a notion of flatness for functors $$F:{{\mathcal {C}}}\rightarrow {{\mathcal {E}}}$$
F
:
C
→
E
with lex codomain, and using this to describe the universal property of free $$\Phi $$
Φ
-exact completions in the absence of finite limits, for any given class $$\Phi $$
Φ
of lex weights. In particular, we shall give necessary and sufficient conditions for the existence of free lextensive and free pretopos completions in the non-lex world, and prove that the ultraproducts, in the categories of models of such completions, satisfy an universal property.
Funder
Grantová Agentura České Republiky
Publisher
Springer Science and Business Media LLC
Reference60 articles.
1. Adámek, J., Borceux, F., Lack, S., Rosický, J.: A classification of accessible categories. J. Pure Appl. Algebra 175(1), 7–30 (2002). (Special Volume celebrating the 70th birthday of Professor Max Kelly)
2. London Mathematical Society Lecture Note Series;J Adámek,1994
3. Adámek, J., Rosický, J.: An algebraic description of locally multipresentable categories. Theory Appl. Categ. 2(4), 40–54 (1996)
4. Aravantinos-Sotiropoulos, V., Karazeris, P.: A property of effectivization and its uses in categorical logic. Theory Appl. Categ. 32(22), 769–779 (2017)
5. Barr, M.: Exact categories. Lecture Notes Math. 236, 1–120 (1971)