Abstract
AbstractWe prove a new version of Bogomolov’s inequality on normal proper surfaces. This allows to construct Bridgeland’s stability condition on such surfaces. In particular, this gives the first known examples of stability conditions on non-projective, proper schemes.
Publisher
Springer Science and Business Media LLC
Reference20 articles.
1. Arcara, D., Bertram, A.: Bridgeland-stable moduli spaces for K-trivial surfaces. With an appendix by Max Lieblich. J. Eur. Math. Soc. 15, 1–38 (2013)
2. Bridgeland, T.: Stability conditions on K3 surfaces. Duke Math. J. 141, 241–291 (2008)
3. Fujino, O., Miyamoto, K.: Nakai-Moishezon ampleness criterion for real line bundles. Math. Ann. 385, 459–470 (2023)
4. Fulton, W.: Intersection theory. In: Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 2, 2nd edn. Springer, Berlin, pp xiv+470 (1998)
5. Giraud, J.: Improvement of Grauert-Riemenschneider’s theorem for a normal surface. Ann. Inst. Fourier (Grenoble) 32, 13–23 (1982)