Abstract
AbstractLet X be an irreducible, reduced complex projective hypersurface of degree d. A point P not contained in X is called uniform if the monodromy group of the projection of X from P is isomorphic to the symmetric group $$S_d$$
S
d
. We prove that the locus of non-uniform points is finite when X is smooth or a general projection of a smooth variety. In general, it is contained in a finite union of linear spaces of codimension at least 2, except possibly for a special class of hypersurfaces with singular locus linear in codimension 1. Moreover, we generalise a result of Fukasawa and Takahashi on the finiteness of Galois points.
Funder
Ministero dell’Istruzione, dell’Università e della Ricerca
Università degli Studi di Pavia
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献