Author:
Barbagallo Annamaria,Esposito Vincenzo
Abstract
AbstractThe paper concerns the study of the Cauchy–Dirichlet problem for a class of hyperbolic second-order operators with double characteristics in presence of transition in a domain of $${\mathbb {R}}^3$$
R
3
. Firstly, we establish some a priori local and global estimates. Then, we obtain some existence results.
Funder
Università degli Studi di Napoli Federico II
Publisher
Springer Science and Business Media LLC
Reference17 articles.
1. Barbagallo, A., Esposito, V.: A priori estimate for a class of hyperbolic equations with double characteristics. Rend. Acc. Sc. Fis. Mat. Napoli LXXXI, 113–120 (2014)
2. Barbagallo, A., Esposito, V.: A global existence and uniqueness result for a class of hyperbolic operators. Ricerche Mat. 63, 25–40 (2014)
3. Barbagallo, A., Esposito, V.: New results on the Cauchy problem for a class of hyperbolic equations in the half-space. In: AIP Conference Proceedings 1648, art. no. 850130 (2015)
4. Barbagallo, A., Esposito, V.: Energy estimates for the Cauchy problem associated to a class of hyperbolic operators with double characteristics in presence of transition. Ricerche Mat. 64, 243–249 (2015)
5. Barbagallo, A., Esposito, V.: The Cauchy–Dirichlet problem for a class of hyperbolic operators with double characteristics in presence of transition. J. Math. Anal. Appl. 442, 149–170 (2016)