Abstract
AbstractWe classify Einstein metrics on $$\mathbb {R}^4$$
R
4
invariant under a four-dimensional group of isometries including a principal action of the Heisenberg group. We consider metrics which are either Ricci-flat or of negative Ricci curvature. We show that all of the Ricci-flat metrics, including the simplest ones which are hyper-Kähler, are incomplete. By contrast, those of negative Ricci curvature contain precisely two complete examples: the complex hyperbolic metric and a metric of cohomogeneity one known as the one-loop deformed universal hypermultiplet.
Funder
Deutsche Forschungsgemeinschaft
Universität Hamburg
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献