Gradient continuity for the parabolic $$(1,\,p)$$-Laplace equation under the subcritical case

Author:

Tsubouchi ShuntaroORCID

Abstract

AbstractThis paper is concerned with the gradient continuity for the parabolic $$(1,\,p)$$ ( 1 , p ) -Laplace equation. In the supercritical case $$\frac{2n}{n+2}<p<\infty $$ 2 n n + 2 < p < , where $$n\ge 2$$ n 2 denotes the space dimension, this gradient regularity result has been proved recently by the author. In this paper, we would like to prove that the same regularity holds even for the subcritical case $$1<p\le \frac{2n}{n+2}$$ 1 < p 2 n n + 2 with $$n\ge 3$$ n 3 , on the condition that a weak solution admits the $$L^{s}$$ L s -integrability with $$s>\frac{n(2-p)}{p}$$ s > n ( 2 - p ) p . The gradient continuity is proved, similarly to the supercritical case, once the local gradient bounds of solutions are verified. Hence, this paper mainly aims to show the local boundedness of a solution and its gradient by Moser’s iteration. The proof is completed by considering a parabolic approximate problem, verifying a comparison principle, and showing a priori gradient estimates of a bounded weak solution to the relaxed equation.

Funder

Japan Society for the Promotion of Science

The University of Tokyo

Publisher

Springer Science and Business Media LLC

Reference29 articles.

1. Alikakos, N.D., Evans, L.C.: Continuity of the gradient for weak solutions of a degenerate parabolic equation. J. Math. Pures Appl. (9) 62(3), 253–268 (1983)

2. Progress in Mathematics;F Andreu-Vaillo,2004

3. Bögelein, V., Duzaar, F., Giova, R., Passarelli di Napoli, A.: Higher regularity in congested traffic dynamics. Math. Ann. 385(3–4), 1823–1878 (2023)

4. Bögelein, V., Duzaar, F., Gianazza, U., Liao, N., Scheven, C.: Hölder continuity of the gradient of solutions to doubly non-linear parabolic equations. arXiv preprint arXiv:2305.08539v1, (2023)

5. Bögelein, V., Duzaar, F., Liao, N., Scheven, C.: Gradient Hölder regularity for degenerate parabolic systems. Nonlinear Anal. 225, 113119 (2022)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3