Free surface equatorial flows in spherical coordinates with discontinuous stratification depending on depth and latitude

Author:

Martin CalinORCID,Petruşel Adrian

Abstract

AbstractWe derive and subsequently analyze an exact solution of the geophysical fluid dynamics equations which describes equatorial flows (in spherical coordinates) and has a discontinuous fluid stratification that varies with both depth and latitude. More precisely, this solution represents a steady, purely–azimuthal equatorial two-layer flow with an associated free-surface and a discontinuous distribution of the density which gives rise to an interface separating the two fluid regions. While the velocity field and the pressure are given by means of explicit formulas, the shape of the free surface and of the interface are given in implicit form: indeed we demonstrate that there is a well-defined relationship between the imposed pressure at the free-surface and the resulting distortion of the surface’s shape. Moreover, imposing the continuity of the pressure along the interface generates an equation that describes (implicitly) the shape of the interface. We also provide a regularity result for the interface defining function under certain assumptions on the velocity field.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3