Abstract
AbstractIn this article we study perturbations of local, nonlinear Dirichlet forms on arbitrary topological measure spaces. As a main result, we show that the semigroup generated by a local, regular, nonlinear Dirichlet form $${\mathcal {E}}$$
E
dominates the semigroup generated by another local functional $${\mathcal {F}}$$
F
if, and only if, $${\mathcal {F}}$$
F
is a specific zero order perturbation of $${\mathcal {E}}$$
E
. On the way, we prove a nonlinear version of the Riesz–Markov representation theorem, we define an abstract boundary of a topological measure space, and apply the notion of nonlinear capacity. The main result helps to classify the perturbations that lie between Neumann and Dirichlet boundary conditions.
Funder
Technische Universität Dresden
Publisher
Springer Science and Business Media LLC
Reference16 articles.
1. Arora, S., Chill, R., Djida, J.-D.: Domination of semigroups generated by regular forms. Proc. Am. Math. Soc. 152(5), 2117–2129 (2024)
2. Akhlil, Kh.: Locality and domination of semigroups. Results Math. 73(2):Paper No. 59, 11 (2018)
3. Arens, R.: Representation of *-algebras. Duke Math. J. 14, 269–282 (1947)
4. Arendt, W., Warma, M.: Dirichlet and Neumann boundary conditions: What is in between? J. Evol. Equ., 3(1), 119–135 (2003). Dedicated to Philippe Bénilan
5. Barthélemy, L.: Invariance d’un convexe fermé par un semi-groupe associé à une forme non-linéaire. Abstr. Appl. Anal. 1(3), 237–262 (1996)