Functional analysis and exterior calculus on mixed-dimensional geometries

Author:

Boon Wietse M.ORCID,Nordbotten Jan M.ORCID,Vatne Jon E.ORCID

Abstract

AbstractWe are interested in differential forms on mixed-dimensional geometries, in the sense of a domain containing sets of d-dimensional manifolds, structured hierarchically so that each d-dimensional manifold is contained in the boundary of one or more $$d + 1$$ d + 1 -dimensional manifolds. On any given d-dimensional manifold, we then consider differential operators tangent to the manifold as well as discrete differential operators (jumps) normal to the manifold. The combined action of these operators leads to the notion of a semi-discrete differential operator coupling manifolds of different dimensions. We refer to the resulting systems of equations as mixed-dimensional, which have become a popular modeling technique for physical applications including fractured and composite materials. We establish analytical tools in the mixed-dimensional setting, including suitable inner products, differential and codifferential operators, Poincaré lemma, and Poincaré–Friedrichs inequality. The manuscript is concluded by defining the mixed-dimensional minimization problem corresponding to the Hodge Laplacian, and we show that this minimization problem is well-posed.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics

Reference34 articles.

1. Adams, R., Fournier, J.: Sobolev Spaces. Elsevier Science, Pure and Applied Mathematics (2003)

2. Alboin, C., Jaffré, J., Roberts, J.E., Serres, C.: Domain decomposition for flow in porous media with fractures. In: 14th Conference on Domain Decomposition Methods in Sciences and Engineering (1999)

3. Arnold, D.N., Falk, R.S., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15, 1–155 (2006)

4. Avci, C.B.: Evaluation of flow leakage through abandoned wells and boreholes. Water Resour. Res. 30(9), 2565–2578 (1994)

5. Babuska, I., Aziz, A.K.: Survey lectures on the mathematical foundations. In: The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York, pp. 1–359 (1972)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3