Predicting life engagement and happiness from gaming motives and primary emotional traits before and during the COVID pandemic: a machine learning approach

Author:

Dagum Nolan,Pontes Halley M.,Montag Christian

Abstract

AbstractThe present study investigated whether life engagement and happiness can be predicted from gaming motives and primary emotional traits. Two machine learning algorithms (random forest model and one-dimensional convolutional neural network) were applied using a dataset from before the COVID-19 pandemic as the training dataset. The algorithms derived were then applied to test if they would be useful in predicting life engagement and happiness from gaming motives and primary emotional systems on a dataset collected during the pandemic. The best prediction values were observed for happiness with ρ = 0.758 with explained variance of R2 = 0.575 when applying the best performing algorithm derived from the pre-COVID dataset to the COVID dataset. Hence, this shows that the derived algorithm based on the pre-pandemic data set, successfully predicted happiness (and life engagement) from the same set of variables during the pandemic. Overall, this study shows the feasibility of applying machine learning algorithms to predict life engagement and happiness from gaming motives and primary emotional systems.

Funder

Universität Ulm

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3