Nonlinear dynamics in space plasma turbulence: temporal stochastic chaos

Author:

Chian A. C.-L.ORCID,Borotto F. A.,Hada T.,Miranda R. A.,Muñoz P. R.,Rempel E. L.

Abstract

AbstractIntermittent turbulence is key for understanding the stochastic nonlinear dynamics of space, astrophysical, and laboratory plasmas. We review the theory of deterministic and stochastic temporal chaos in plasmas and discuss its link to intermittent turbulence observed in space plasmas. First, we discuss the theory of chaos, intermittency, and complexity for nonlinear Alfvén waves, and parametric decay and modulational wave–wave interactions, in the absence/presence of noise. The transition from order to chaos is studied using the bifurcation diagram. The following two types of deterministic intermittent chaos in plasmas are considered: type-I Pomeau–Manneville intermittency and crisis-induced intermittency. The role of structures known as chaotic saddles in deterministic and stochastic chaos in plasmas is investigated. Alfvén complexity associated with noise-induced intermittency, in the presence of multistability, is studied. Next, we present evidence of magnetic reconnection and intermittent magnetic turbulence in coronal mass ejections in the solar corona and solar wind via remote and in situ observations. The signatures of turbulent magnetic reconnection, i.e., bifurcated current sheet, reconnecting jet, parallel/anti-parallel Alfvénic waves, and spiky dynamical pressure pulse, as well as fully developed turbulence, are detected at the leading edge of an interplanetary coronal mass ejection and the interface region of two merging interplanetary magnetic flux ropes. Methods for quantifying the degree of coherence, amplitude–phase synchronization, and multifractality of nonlinear multiscale fluctuations are discussed. The stochastic chaotic nature of Alfvénic intermittent structures driven by magnetic reconnection is determined by a complexity–entropy analysis. Finally, we discuss the relation of nonlinear dynamics and intermittent turbulence in space plasmas to similar phenomena observed in astrophysical and laboratory plasmas, e.g., coronal mass ejections and flares in the stellar-exoplanetary environment and Galactic Center, as well as chaos, magnetic reconnection, and intermittent turbulence in laser-plasma and nuclear fusion experiments.

Funder

Fundação de Apoio à Pesquisa do Distrito Federal

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

The University of Adelaide

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3