On the synergic approach toward the experimental realization of interesting fundamental science within the framework of relativistic flying mirror concept
-
Published:2024-03-16
Issue:1
Volume:8
Page:
-
ISSN:2367-3192
-
Container-title:Reviews of Modern Plasma Physics
-
language:en
-
Short-container-title:Rev. Mod. Plasma Phys.
Author:
Jeong Tae MoonORCID, Bulanov Sergei V., Valenta Petr, Hadjisolomou Prokopis
Abstract
AbstractThe relativistic flying parabolic mirror can provide a higher laser intensity than the intensity a current laser system can reach via the optical-focusing scheme. A weakly relativistic laser intensity (1.8 $$\times$$
×
10$$^{17}$$
17
W/cm$$^2$$
2
, $$\eta = 0.29$$
η
=
0.29
) can be intensified up to a super-strong intensity of $$>\textrm{1}\times$$
>
1
×
10$$^{27}$$
27
W/cm$$^2$$
2
($$\eta \approx 2.2 \times 10^4$$
η
≈
2.2
×
10
4
) by the relativistic flying mirror. Such a super-strong field can be applied to study the strong-field quantum electrodynamics in perturbative and non-perturbative regimes. In this review, the analytic derivations on the field strength and distribution obtained by the ideal relativistic flying parabolic mirror have been shown under the 4$$\pi$$
π
-spherical-focusing approach. The quantum non-linearity parameter is calculated when such a super-strong field collides with the high-energy $$\gamma$$
γ
-photons. The peak quantum non-linearity parameter reaches above 1600 when the 1-GeV $$\gamma$$
γ
-photon collides with a super-strong laser field reflected and focused by the relativistic flying mirror driven by a 10 PW laser pulse.
Funder
European Regional Development Fund The Extreme Light Infrastructure ERIC
Publisher
Springer Science and Business Media LLC
Reference102 articles.
1. H. Abramowicz, U. Acosta, M. ltarelli, R. Aßmann, Z. Bai, T. Behnke, Y. Benhammou, T. Blackburn, S. Boogert, O. Borysov, M. Borysova, R. Brinkmann, M. Bruschi, F. Burkart, K. Büßer, N. Cavanagh, O. Davidi, W. Decking, U. Dosselli, N. Elkina, A. Fedotov, M. Firlej, T. Fiutowski, K. Fleck, M. Gostkin, C. Grojean, J. Hallford, H. Harsh, A. Hartin, B. Heinemann, T. Heinzl, L. Helary, M. Hoffmann, S. Huang, X. Huang, M. Idzik, A. Ilderton, R. Jacobs, B. Kämpfer, B. King, H. Lahno, A. Levanon, A. Levy, I. Levy, J. List, W. Lohmann, T. Ma, A.J. Macleod, V. Malka, F. Meloni, A. Mironov, M. Morandin, J. Moron, E. Negodin, G. Perez, I. Pomerantz, R. Pöschl, R. Prasad, F. Quéré, A. Ringwald, C. Rödel, S. Rykovanov, F. Salgado, A. Santra, G. Sarri, A. Sävert, A. Sbrizzi, S. Schmitt, U. Schramm, S. Schuwalow, D. Seipt, L. Shaimerdenova, M. Shchedrolosiev, M. Skakunov, Y. Soreq, M. Streeter, K. Swientek, N.T. Hod, S. Tang, T. Teter, D. Thoden, A.I. Titov, O. Tolbanov, G. Torgrimsson, A. Tyazhev, M. Wing, M. Zanetti, A. Zarubin, K. Zeil, M. Zepf, A Zhemchukov, Conceptual design report for the LUXE experiment. Eur. Phys. J.: Spec. Top. 230(11), 2445–2560 (2021) 2. M. Abramowicz, I.A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972) 3. T. Baeva, S. Gordienko, A. Pukhov, Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404 (2006) 4. C. Bamber, S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, W. Ragg, C. Bula, K.T. McDonald, E.J. Prebys, D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D 60, 092004 (1999) 5. A.R. Bell, J.G. Kirk, Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett. 101, 200403 (2008)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|