On the synergic approach toward the experimental realization of interesting fundamental science within the framework of relativistic flying mirror concept

Author:

Jeong Tae MoonORCID,Bulanov Sergei V.,Valenta Petr,Hadjisolomou Prokopis

Abstract

AbstractThe relativistic flying parabolic mirror can provide a higher laser intensity than the intensity a current laser system can reach via the optical-focusing scheme. A weakly relativistic laser intensity (1.8 $$\times$$ × 10$$^{17}$$ 17 W/cm$$^2$$ 2 , $$\eta = 0.29$$ η = 0.29 ) can be intensified up to a super-strong intensity of $$>\textrm{1}\times$$ > 1 × 10$$^{27}$$ 27 W/cm$$^2$$ 2 ($$\eta \approx 2.2 \times 10^4$$ η 2.2 × 10 4 ) by the relativistic flying mirror. Such a super-strong field can be applied to study the strong-field quantum electrodynamics in perturbative and non-perturbative regimes. In this review, the analytic derivations on the field strength and distribution obtained by the ideal relativistic flying parabolic mirror have been shown under the 4$$\pi$$ π -spherical-focusing approach. The quantum non-linearity parameter is calculated when such a super-strong field collides with the high-energy $$\gamma$$ γ -photons. The peak quantum non-linearity parameter reaches above 1600 when the 1-GeV $$\gamma$$ γ -photon collides with a super-strong laser field reflected and focused by the relativistic flying mirror driven by a 10 PW laser pulse.

Funder

European Regional Development Fund

The Extreme Light Infrastructure ERIC

Publisher

Springer Science and Business Media LLC

Reference102 articles.

1. H. Abramowicz, U. Acosta, M. ltarelli, R. Aßmann, Z. Bai, T. Behnke, Y. Benhammou, T. Blackburn, S. Boogert, O. Borysov, M. Borysova, R. Brinkmann, M. Bruschi, F. Burkart, K. Büßer, N. Cavanagh, O. Davidi, W. Decking, U. Dosselli, N. Elkina, A. Fedotov, M. Firlej, T. Fiutowski, K. Fleck, M. Gostkin, C. Grojean, J. Hallford, H. Harsh, A. Hartin, B. Heinemann, T. Heinzl, L. Helary, M. Hoffmann, S. Huang, X. Huang, M. Idzik, A. Ilderton, R. Jacobs, B. Kämpfer, B. King, H. Lahno, A. Levanon, A. Levy, I. Levy, J. List, W. Lohmann, T. Ma, A.J. Macleod, V. Malka, F. Meloni, A. Mironov, M. Morandin, J. Moron, E. Negodin, G. Perez, I. Pomerantz, R. Pöschl, R. Prasad, F. Quéré, A. Ringwald, C. Rödel, S. Rykovanov, F. Salgado, A. Santra, G. Sarri, A. Sävert, A. Sbrizzi, S. Schmitt, U. Schramm, S. Schuwalow, D. Seipt, L. Shaimerdenova, M. Shchedrolosiev, M. Skakunov, Y. Soreq, M. Streeter, K. Swientek, N.T. Hod, S. Tang, T. Teter, D. Thoden, A.I. Titov, O. Tolbanov, G. Torgrimsson, A. Tyazhev, M. Wing, M. Zanetti, A. Zarubin, K. Zeil, M. Zepf, A Zhemchukov, Conceptual design report for the LUXE experiment. Eur. Phys. J.: Spec. Top. 230(11), 2445–2560 (2021)

2. M. Abramowicz, I.A. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables (Dover, New York, 1972)

3. T. Baeva, S. Gordienko, A. Pukhov, Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404 (2006)

4. C. Bamber, S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, W. Ragg, C. Bula, K.T. McDonald, E.J. Prebys, D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, Studies of nonlinear QED in collisions of 46.6 GeV electrons with intense laser pulses. Phys. Rev. D 60, 092004 (1999)

5. A.R. Bell, J.G. Kirk, Possibility of prolific pair production with high-power lasers. Phys. Rev. Lett. 101, 200403 (2008)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3