Oxygen Consumption of Resuspended Sediments of the Upper Elbe Estuary: Process Identification and Prognosis

Author:

Spieckermann M.ORCID,Gröngröft A.,Karrasch M.,Neumann A.,Eschenbach A.

Abstract

AbstractThe resuspension of sediment leads to an increased release of nutrients and organic substances into the overlying water column, which can have a negative effect on the oxygen budget. Especially in the warmer months with a lower oxygen saturation and higher biological activity, the oxygen content can reach critical thresholds in estuaries like the upper Elbe estuary. Many studies have dealt with the nutrient fluxes that occur during a resuspension event. However, the sediment properties that influence the oxygen consumption potential (OCP) and the different biochemical processes have not been examined in detail. To fill this gap, we investigated the biogeochemical composition, texture, and OCP of sediments at 21 locations as well as the temporal variability within one location for a period of 2 years (monthly sampling) in the upper Elbe estuary. The OCP of sediments during a seven-day resuspension event can be described by the processes of sulphate formation, nitrification, and mineralisation. Chlorophyll, total nitrogen (Ntotal), and total organic carbon showed the highest correlations with the OCP. Based on these correlations, we developed a prognosis model to calculate the OCP for the upper Elbe estuary with a single sediment parameter (Ntotal). The model is well suited to calculate the oxygen consumption of resuspended sediments in the Hamburg port area during the relevant warmer months and shows a normalised root mean squared error of < 0.11 ± 0.13. Thus, the effect of maintenance measures such as water injection dredging and ship-induced wave on the oxygen budget of the water can be calculated.

Funder

Hamburg Port Authority

Universität Hamburg

Publisher

Springer Science and Business Media LLC

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3