Rib remodelling changes with body size in fossil hippopotamuses from Cyprus and Greece

Author:

Miszkiewicz Justyna J.ORCID,Athanassiou Athanassios,Lyras George A.,van der Geer Alexandra A. E.ORCID

Abstract

AbstractLarge species that are isolated for thousands of years on islands often evolve extreme degrees of dwarfism. Very little is known about physiological processes that accompany such extreme transitions in extinct dwarf species. We tested whether physiological cycles of bone maintenance (remodelling) in dwarf adult hippopotamuses correlate with insularity-driven body mass shifts that may occur due to variables such as ecological release from predation pressure and change in access to resources. We hypothesised that hippopotamuses with the smallest body size should show higher values of osteocyte lacunae, proxies for osteoblast proliferation during cycles of remodelling, when compared to relatively larger dwarf forms, as well as much larger mainland common hippopotamuses. We examined 20 ribs from three extinct Pleistocene Hippopotamus species spanning a gradient in body size: H. minor (~132 kg, Cyprus), H. creutzburgi (~398 kg, Crete), and H. antiquus (~3200 kg, mainland Greece). Ribs were selected because they reflect bone metabolic rates that are not completely clouded by factors such as biomechanics. Densities of osteocyte lacunae (Ot.Dn) were examined in 864 individual secondary osteons observed in histology sections. We found the highest average Ot.Dn in the H. minor ribs, intermediate Ot.Dn in the H. creutzburgi ribs, and the lowest Ot.Dn in the H. antiquus ribs. It appears that Ot.Dn distinctly separated these three species, possibly signifying a gradient in bone remodelling such that bone tissue optimises maintenance in the face of insularity-driven reduction of body size. We discuss hippopotamus rib bone microstructure and the utility of Ot.Dn in palaeontological analyses for elucidating intricate biological processes occurring in bone of insular fossil mammals.

Funder

The University of Queensland

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3