A low order dynamical model for runoff predictability

Author:

Olson RomanORCID,Timmermann Axel,Lee June-Yi,An Soon-Il

Abstract

AbstractRecent work has identified potential multi-year predictability in soil moisture (Chikamoto et al. in Clim Dyn 45(7–8):2213–2235, 2015). Whether this long-term predictability translates into an extended predictability of runoff still remains an open question. To address this question we develop a physically-based zero-dimensional stochastical dynamical model. The model extends previous work of Dolgonosov and Korchagin (Water Resour 34(6):624–634, 2007) by including a runoff-generating soil moisture threshold. We consider several assumptions on the input rainfall noise. We analyze the applicability of analytical solutions for the stationary probability density functions (pdfs) and for waiting times for runoff under different assumptions. Our results suggest that knowing soil moisture provides important information on the waiting time for runoff. In addition, we fit the simple model to daily NCEP1 reanalysis output on a near-global scale, and analyze fitted model performance. Over many tropical regions, the model reproduces the simulated runoff in NCEP1 reasonably well. More detailed analysis over a single gridpoint illustrates that the model, despite its simplicity, is able to capture some key features of the runoff time series and pdfs of a more complex model. Our model exhibits runoff predictability of up to two months in advance. Our results suggest that there is an optimal predictability “window” in the transition zone between runoff-generating and dry conditions. Our model can serve as a “null hypothesis” model reference against more complex models for runoff predictability.

Funder

Government of Korea

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3