Long-term probabilistic temperature projections for all locations

Author:

Chen Xin,Raftery Adrian E.ORCID,Battisti David S.,Liu Peiran R.

Abstract

AbstractThe climate change projections of the Intergovernmental Panel on Climate Change are based on scenarios for future emissions, but these are not statistically-based and do not have a full probabilistic interpretation. Raftery et al. (Nat Clim Change 7:637–641, 2017) and Liu and Raftery (Commun Earth Environ 2:1–10, 2021) developed probabilistic forecasts for global average temperature change to 2100, but these do not give forecasts for specific parts of the globe. Here we develop a method for probabilistic long-term spatial forecasts of local average annual temperature change, combining the probabilistic global method with a pattern scaling approach. This yields a probability distribution for temperature in any year and any part of the globe in the future. Out-of-sample predictive validation experiments show the method to be well calibrated. Consistent with previous studies, we find that for long-term temperature changes, high latitudes warm more than low latitudes, continents more than oceans, and the Northern Hemisphere more than the Southern Hemisphere, except for the North Atlantic. There is a 5% chance that the temperature change for the Arctic would reach 16 $$^\circ $$ C. With probability 95%, the temperature of North Africa, West Asia and most of Europe will increase by at least 2 $$^\circ $$ C. We find that natural variability is a large part of the uncertainty in early years, but this declines so that by 2100 most of the overall uncertainty comes from model uncertainty and uncertainty about future emissions.

Funder

national institute of child health and human development

tamaki foundation

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3