Climatology of diablo winds in Northern California and their relationships with large-scale climate variabilities

Author:

Liu Yi-ChinORCID,Di Pingkuan,Chen Shu-Hua,Chen XueMeng,Fan Jiwen,DaMassa John,Avise Jeremy

Abstract

AbstractThe most destructive wildfires recently in Northern California have been linked to the occurrences of Diablo Winds (DWs). This study investigates the climatology of DWs during September–December 1979–2018, and their relationships with various climate modes using observations and two high-resolution reanalysis datasets. Our finding shows that DWs do not have a long-term trend in terms of the annual total number, total duration, and associated maximum wind speeds of DWs over the past 4 decades. However, their associated minimum relative humidity (RH) has decreased significantly, especially in October, which suggests that the dryness during DWs has become more severe with time, possibly leading to an increased chance of fires, and their destructive potential. We also find that the annual total number and duration of DWs have exhibited an quasi-periodic variation, with intervals ranging from 2 to 4 years. The periodic variability of DWs might be attributed to the teleconnections between DWs and climate oscillations, specifically the El Niño–Southern Oscillation (ENSO) and the quasi-biennial oscillation (QBO), through their modulation of pressure systems near California and the location of the Pacific jet stream. It is suggested that when La Niña and the QBO westerly phases co-occur in the spring, DWs in the following fall and winter tend to occur more frequently, and are associated with more intense high winds and dryness as compared to other springtime QBO and ENSO phases. This relationship may be used to predict the seasonal outlook of DWs.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3